Report on Botulinum Neurotoxin-Producing Clostridia

References

Last updated: 04 December 2023

1.       Advisory Committee on the Microbiological Safety of Food (ACMSF). Report on Vacuum Packaging and Associated Processes.; 1992. https://acmsf.food.gov.uk/sites/default/files/mnt/drupal_data/sources/files/multimedia/pdfs/acmsfvacpackreport.pdf

2.       FSA. The safety and shelf-Life of vacuum and modified atmosphere packed chilled foods with respect to non-proteolytic Clostridium botulinum.; 2020. https://www.food.gov.uk/sites/default/files/media/document/the-safety-and-shelf-life-of-vacuum-and-modified-atmosphere-packed-chilled-foods-with-respect-to-non-proteolytic-clostridium-botulinum_1.pdf

3.       Li J, Paredes-Sabja D, Sarker MR, McClane BA. Clostridium perfringens Sporulation and Sporulation-Associated Toxin Production. Microbiol Spectr. 2016;4(3). https://doi.org/10.1128/microbiolspec.TBS-0022-2015

4.       Zornetta I, Azarnia Tehran D, Arrigoni G, et al. The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. Sci Rep. 2016;6:30257. https://doi.org/10.1038/srep30257

5.       Peck MW, Smith TJ, Anniballi F, et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins. 2017;9(1):E38. https://doi.org/10.3390/toxins9010038

6.       WHO. Botulism. Published 2018. Accessed October 28, 2022. https://www.who.int/news-room/fact-sheets/detail/botulism

7.       Peck MW. Biology and genomic analysis of Clostridium botulinum. Adv Microb Physiol. 2009;55:183-265, 320. https://doi.org/10.1016/S0065-2911(09)05503-9

8.       Brunt J, van Vliet AHM, Carter AT, et al. Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins. 2020;12(9):E586. https://doi.org/10.3390/toxins12090586

9.       Brunt J, van Vliet AHM, Stringer SC, Carter AT, Lindström M, Peck MW. Pan-Genomic Analysis of Clostridium botulinum Group II (Non-Proteolytic C. botulinum) Associated with Foodborne Botulism and Isolated from the Environment. Toxins. 2020;12(5):E306. https://doi.org/10.3390/toxins12050306

10.      Wachnicka E, Stringer SC, Barker GC, Peck MW. Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance. Appl Environ Microbiol. 2016;82(19):6019-6029. https://doi.org/10.1128/AEM.01737-16

11.      van Vliet AHM. Personal communication (University of Surrey, Guildford, UK). Published online 2022.

12.      Mazuet C, Legeay C, Sautereau J, et al. Characterization of Clostridium baratii Type F Strains Responsible for an Outbreak of Botulism Linked to Beef Meat Consumption in France. PLoS Curr. 2017;9. https://doi.org/10.1371/currents.outbreaks.6ed2fe754b58a5c42d0c33d586ffc606

13.      Silva-Andrade C, Martin AJ, Garrido D. Comparative Genomics of Clostridium baratii Reveals Strain-Level Diversity in Toxin Abundance. Microorganisms. 2022;10(2):213. https://doi.org/10.3390/microorganisms10020213

14.      Brunt J, Carter AT, Stringer SC, Peck MW. Identification of a novel botulinum neurotoxin gene cluster in Enterococcus. FEBS Lett. 2018;592(3):310-317. https://doi.org/10.1002/1873-3468.12969

15.      Mansfield MJ, Adams JB, Doxey AC. Botulinum neurotoxin homologs in non-Clostridium species. FEBS Lett. 2015;589(3):342-348. https://doi.org/10.1016/j.febslet.2014.12.018

16.      Wentz TG, Muruvanda T, Lomonaco S, et al. Closed Genome Sequence of Chryseobacterium piperi Strain CTMT/ATCC BAA-1782, a Gram-Negative Bacterium with Clostridial Neurotoxin-Like Coding Sequences. Genome Announc. 2017;5(48):e01296-17. https://doi.org/10.1128/genomeA.01296-17

17.      Thirunavukkarasu N, Johnson E, Pillai S, et al. Botulinum Neurotoxin Detection Methods for Public Health Response and Surveillance. Front Bioeng Biotechnol. 2018;6:80. https://doi.org/10.3389/fbioe.2018.00080

18.      Health Protection Scotland (HPS). An Outbreak of Food-Borne Botulism in Scotland, November 2011.; 2013. Accessed October 28, 2022. https://hps.scot.nhs.uk/web-resources-container/an-outbreak-of-food-borne-botulism-in-scotland-november-2011/

19.      Nepal MR, Jeong TC. Alternative Methods for Testing Botulinum Toxin: Current Status and Future Perspectives. Biomol Ther. 2020;28(4):302-310. https://doi.org/10.4062/biomolther.2019.200

20.      Cheng LW, Land KM, Tam C, et al. Technologies for Detecting Botulinum Neurotoxins in Biological and Environmental Matrices. In: Significance, Prevention and Control of Food Related Diseases. Makun, H. IntechOpen; 2016. https://doi.org/10.5772/63064

21.      Chen Y, Li H, Yang L, et al. Rapid Detection of Clostridium botulinum in Food Using Loop-Mediated Isothermal Amplification (LAMP). Int J Environ Res Public Health. 2021;18(9):4401. https://doi.org/10.3390/ijerph18094401

22.      Williamson CHD, Vazquez AJ, Hill K, et al. Differentiating Botulinum Neurotoxin-Producing Clostridia with a Simple, Multiplex PCR Assay. Appl Environ Microbiol. 2017;83(18):e00806-17. https://doi.org/10.1128/AEM.00806-17

23.      Peck MW, Plowman J, Aldus CF, et al. Development and Application of a New Method for Specific and Sensitive Enumeration of Spores of Nonproteolytic Clostridium botulinum Types B, E, and F in Foods and Food Materials. Appl Environ Microbiol. 2010;76(19):6607-6614. https://doi.org/10.1128/AEM.01007-10

24.      Doyle CJ, O’Toole PW, Cotter PD. Genomic Characterization of Sulphite Reducing Bacteria Isolated From the Dairy Production Chain. Front Microbiol. 2018;9. Accessed November 9, 2022. https://doi.org/10.3389/fmicb.2018.01507

25.      Anniballi F, Auricchio B, Fiore A, et al. Botulism in Italy, 1986 to 2015. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2017;22(24):30550. https://doi.org/10.2807/1560-7917.ES.2017.22.24.30550

26.      Rasetti-Escargueil C, Lemichez E, Popoff MR. Human Botulism in France, 1875–2016. Toxins. 2020;12(5):338. https://doi.org/10.3390/toxins12050338

27.      Rao AK. Clinical Guidelines for Diagnosis and Treatment of Botulism, 2021. MMWR Recomm Rep. 2021;70. https://doi.org/10.15585/mmwr.rr7002a1

28.      Health Security Agency. Personal communication. Published online 2022.

29.      Li H, Guo Y, Tian T, et al. Epidemiological Analysis of Foodborne Botulism Outbreaks — China, 2004–2020. China CDC Wkly. 2022;4(35):788-792. https://doi.org/10.46234/ccdcw2022.114

30.      Fleck-Derderian S, Shankar M, Rao AK, et al. The Epidemiology of Foodborne Botulism Outbreaks: A Systematic Review. Clin Infect Dis Off Publ Infect Dis Soc Am. 2017;66(suppl_1):S73-S81. https://doi.org/10.1093/cid/cix846

31.      Rasetti-Escargueil C, Lemichez E, Popoff MR. Human Botulism in France, 1875–2016. Toxins. 2020;12(5):338. https://doi.org/10.3390/toxins12050338

32.      Mazuet C, Legeay C, Sautereau J, et al. Characterization of Clostridium baratii Type F Strains Responsible for an Outbreak of Botulism Linked to Beef Meat Consumption in France. PLoS Curr. 2017;9. https://doi.org/10.1371/currents.outbreaks.6ed2fe754b58a5c42d0c33d586ffc606

33.      Aureli P, Fenicia L, Pasolini B, Gianfranceschi M, McCroskey LM, Hatheway CL. Two Cases of Type E Infant Botulism Caused by Neurotoxigenic Clostridium butyricum in Italy. J Infect Dis. 1986;154(2):207-211. https://doi.org/10.1093/infdis/154.2.207

34.      Mazuet C, King L, Bouvet P, Legeay C, Sautereau J, Popoff M. Le botulisme humain en France, 2010-2012. Bull Epidémiologique Hebd. 2014;6:106-114.

35.      Aureli P, Di Cunto M, Maffei A, et al. An outbreak in Italy of botulism associated with a dessert made with mascarpone cream cheese. Eur J Epidemiol. 2000;16(10):913-918. https://doi.org/10.1023/A:1011002401014

36.      Fenicia L, Franciosa G, Pourshaban M, Aureli P. Intestinal toxemia botulism in two young people, caused by Clostridium butyricum type E. Clin Infect Dis Off Publ Infect Dis Soc Am. 1999;29(6):1381-1387. https://doi.org/10.1086/313497

37.      Lúquez C, Edwards L, Griffin C, Sobel J. Foodborne Botulism Outbreaks in the United States, 2001-2017. Front Microbiol. 2021;12:713101. https://doi.org/10.3389/fmicb.2021.713101

38.      Harvey SM, Sturgeon J, Dassey DE. Botulism due to Clostridium baratii type F toxin. J Clin Microbiol. 2002;40(6):2260-2262. https://doi.org/10.1128/JCM.40.6.2260-2262.2002

39.      Karsen H, Ceylan MR, Bayındır H, Akdeniz H. Foodborne botulism in Turkey, 1983 to 2017. Infect Dis. 2019;51(2):91-96. https://doi.org/10.1080/23744235.2018.1524582

40.      Khorasan MRM, Rahbar M, Bialvaei AZ, Gouya MM, Shahcheraghi F, Eshrati B. Prevalence, Risk Factors, and Epidemiology of Food-borne Botulism in Iran. J Epidemiol Glob Health. 2020;10(4):288-292. https://doi.org/10.2991/jegh.k.200517.001

41.      Leclair D, Fung J, Isaac-Renton JL, et al. Foodborne botulism in Canada, 1985-2005. Emerg Infect Dis. 2013;19(6):961-968. https://doi.org/10.3201/eid1906.120873

42.      Taylor M, Galanis E, Forsting S, et al. Enteric outbreak surveillance in British Columbia, 2009-2013. Can Commun Dis Rep. 2015;41(11):263-271. https://doi.org/10.14745/ccdr.v41i11a02

43.      Czerwiński M, Czarkowski MP, Kondej B. Foodborne botulism in Poland in 2012. Przegl Epidemiol. 2014;68(2):249-252, 357-359.

44.      Czerwiński M, Czarkowski MP, Kondej B. Foodborne botulism in Poland in 2013. Przegl Epidemiol. 2015;69(2):243-245, 363-365.

45.      Czerwiński M, Czarkowski MP, Kondej B. Foodborne botulism in Poland in 2014. Przegl Epidemiol. 2016;70(2):217-223.

46.      Czerwiński M, Czarkowski MP, Kondej B. Foodborne botulism in Poland in 2015. Przegl Epidemiol. 2017;71(3):339-344.

47.      Fu SW, Wang CH. An Overview of Type E Botulism in China. Biomed Environ Sci. 2008;21(4):353-356. https://doi.org/10.1016/S0895-3988(08)60054-9

48.      Peck MW, Webb MD, Goodburn KE. Assessment of the risk of botulism from chilled, vacuum/modified atmosphere packed fresh beef, lamb and pork held at 3 °C–8 °C. Food Microbiol. 2020;91:103544. https://doi.org/10.1016/j.fm.2020.103544

49.      Edmunds S, Vugia DJ, Rosen HE, et al. Inadequate Refrigeration of Some Commercial Foods Is a Continued Cause of Foodborne Botulism in the United States, 1994–2021. Foodborne Pathog Dis. 2022;19(6):417-422. https://doi.org/10.1089/fpd.2021.0023

50.      Advisory Committee on the Microbiological Safety of Food (ACMSF). Report on Botulism in Cattle.; 2006.

51.      Advisory Committee on Microbiological Safety of Foods (ACMSF). Report on Botulism in Sheep and Goats.; 2009.

52.      Chaudhry R, Dhawan B, Kumar D, et al. Outbreak of suspected Clostridium butyricum botulism in India. Emerg Infect Dis. 1998;4(3):506-507. https://doi.org/10.3201/eid0403.980347

53.      Meng X, Karasawa T, Zou K, et al. Characterization of a neurotoxigenic Clostridium butyricum strain isolated from the food implicated in an outbreak of food-borne type E botulism. J Clin Microbiol. 1997;35(8):2160-2162. https://doi.org/10.1128/jcm.35.8.2160-2162.1997

54.      Anniballi F, Fenicia L, Franciosa G, Aureli P. Influence of pH and temperature on the growth of and toxin production by neurotoxigenic strains of Clostridium butyricum type E. J Food Prot. 2002;65(8):1267-1270. https://doi.org/10.4315/0362-028x-65.8.1267

55.      Zhao W, Lin H, Qian L, Gu X, Dong S, Wang L. Study on an outbreak of type E botulism. Chin J Health Lab Technol. 1995;(5):62-63.

56.      Meng X, Yamakawa K, Zou K, et al. Isolation and characterisation of neurotoxigenic Clostridium butyricum from soil in China. J Med Microbiol. 1999;48(2):133-137. https://doi.org/10.1099/00222615-48-2-133

57.      Hall JD, McCroskey LM, Pincomb BJ, Hatheway CL. Isolation of an organism resembling Clostridium barati which produces type F botulinal toxin from an infant with botulism. J Clin Microbiol. 1985;21(4):654-655. https://doi.org/10.1128/jcm.21.4.654-655.1985

58.      Barash JR, Tang TWH, Arnon SS. First case of infant botulism caused by Clostridium baratii type F in California. J Clin Microbiol. 2005;43(8):4280-4282. https://doi.org/10.1128/JCM.43.8.4280-4282.2005

59.      Hannett GE, Schaffzin JK, Davis SW, et al. Two cases of adult botulism caused by botulinum neurotoxin-producing Clostridium baratii. Anaerobe. 2014;30:178-180. https://doi.org/10.1016/j.anaerobe.2014.10.005

60.      McCroskey LM, Hatheway CL, Woodruff BA, Greenberg JA, Jurgenson P. Type F botulism due to neurotoxigenic Clostridium baratii from an unknown source in an adult. J Clin Microbiol. 1991;29(11):2618-2620. https://doi.org/10.1128/jcm.29.11.2618-2620.1991

61.      Lafuente S, Nolla J, Valdezate S, et al. Two simultaneous botulism outbreaks in Barcelona: Clostridium baratii and Clostridium botulinum. Epidemiol Infect. 2013;141(9):1993-1995. https://doi.org/10.1017/S0950268812002592

62.      Castor C, Mazuet C, Saint-Leger M, et al. Cluster of two cases of botulism due to Clostridium baratii type F in France, November 2014. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2015;20(6):21031. https://doi.org/10.2807/1560-7917.es2015.20.6.21031

63.      Tréhard H, Poujol I, Mazuet C, et al. A cluster of three cases of botulism due to Clostridium baratii type F, France, August 2015. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2016;21(4). https://doi.org/10.2807/1560-7917.ES.2016.21.4.30117

64.      Raphael BH, Choudoir MJ, Lúquez C, Fernández R, Maslanka SE. Sequence diversity of genes encoding botulinum neurotoxin type F. Appl Environ Microbiol. 2010;76(14):4805-4812. https://doi.org/10.1128/AEM.03109-09

65.      Halpin JL, Hill K, Johnson SL, et al. Finished Whole-Genome Sequence of Clostridium argentinense Producing Botulinum Neurotoxin Type G. Genome Announc. 2017;5(21):e00380-17. https://doi.org/10.1128/genomeA.00380-17

66.      CDC. National Botulism Surveillance | Botulism | CDC. Published 2022. Accessed November 1, 2022. https://www.cdc.gov/botulism/surveillance.html

67.      McLauchlin J, Grant KA, Little CL. Food-borne botulism in the United Kingdom. J Public Health Oxf Engl. 2006;28(4):337-342. https://doi.org/10.1093/pubmed/fdl053

68.      Brola W, Fudala M, Gacek S, Gruenpeter P. Food-borne botulism: still actual topic. BMJ Case Rep. 2013;2013:bcr2012007799. https://doi.org/10.1136/bcr-2012-007799

69.      Kershaw P, Dioso M, Wong B, et al. Fish botulism--Hawaii, 1990. MMWR Morb Mortal Wkly Rep. 1991;40(24):412-414.

70.      Weber JT, Hibbs RG, Darwish A, et al. A massive outbreak of type E botulism associated with traditional salted fish in Cairo. J Infect Dis. 1993;167(2):451-454. https://doi.org/10.1093/infdis/167.2.451

71.      Hibbs RG, Weber JT, Corwin A, et al. Experience with the use of an investigational F(ab’)2 heptavalent botulism immune globulin of equine origin during an outbreak of type E botulism in Egypt. Clin Infect Dis Off Publ Infect Dis Soc Am. 1996;23(2):337-340. https://doi.org/10.1093/clinids/23.2.337

72.      CDC. Outbreak of type E botulism associated with an uneviscerated, salt-cured fish product--New Jersey, 1992. MMWR Morb Mortal Wkly Rep. 1992;41(29):521-522. https://doi.org/10.1001/jama.1992.03490080019008

73.      Townes JM, Cieslak PR, Hatheway CL, et al. An outbreak of type A botulism associated with a commercial cheese sauce. Ann Intern Med. 1996;125(7):558-563. https://doi.org/10.7326/0003-4819-125-7-199610010-00004

74.      Newkirk RW, Hedberg CW. Rapid detection of foodborne botulism outbreaks facilitated by epidemiological linking of cases: implications for food defense and public health response. Foodborne Pathog Dis. 2012;9(2):150-155. https://doi.org/10.1089/fpd.2011.0971

75.      CDC. Type B botulism associated with roasted eggplant in oil--Italy, 1993. MMWR Morb Mortal Wkly Rep. 1995;44(2):33-36.

76.      Angulo FJ, Getz J, Taylor JP, et al. A large outbreak of botulism: the hazardous baked potato. J Infect Dis. 1998;178(1):172-177. https://doi.org/10.1086/515615

77.      Sobel J, Tucker N, Sulka A, McLaughlin J, Maslanka S. Foodborne botulism in the United States, 1990-2000. Emerg Infect Dis. 2004;10(9):1606-1611. https://doi.org/10.3201/eid1009.030745

78.      Proulx JF, Milor-Roy V, Austin J. Four outbreaks of botulism in Ungava Bay, Nunavik, Quebec. Can Commun Dis Rep Releve Mal Transm Au Can. 1997;23(4):30-32.

79.      Aureli P, Franciosa G, Pourshaban M. Foodborne botulism in Italy. Lancet Lond Engl. 1996;348(9041):1594. https://doi.org/10.1016/S0140-6736(05)66220-4

80.      Polo JM, Martin J, Berciano J. Botulism and pregnancy. Lancet Lond Engl. 1996;348(9021):195. https://doi.org/10.1016/s0140-6736(05)66139-9

81.      Swaddiwudhipong W, Wongwatcharapaiboon P. Foodborne botulism outbreaks following consumption of home-canned bamboo shoots in Northern Thailand. J Med Assoc Thail Chotmaihet Thangphaet. 2000;83(9):1021-1025.

82.      Korkeala H, Stengel G, Hyytiä E, et al. Type E botulism associated with vacuum-packaged hot-smoked whitefish. Int J Food Microbiol. 1998;43(1-2):1-5. https://doi.org/10.1016/s0168-1605(98)00080-4

83.      Villar RG, Shapiro RL, Busto S, et al. Outbreak of type A botulism and development of a botulism surveillance and antitoxin release system in Argentina. JAMA. 1999;281(14):1334-1338, 1340. https://doi.org/10.1001/jama.281.14.1334

84.      Pantukosit S. Medical referral of patients with acute respiratory failure: lessons learned from a large outbreak of botulism in northern Thailand. J Med Assoc Thail Chotmaihet Thangphaet. 2007;90(6):1193-1198.

85.      Centers for Disease Control and Prevention (CDC). Foodborne botulism associated with home-canned bamboo shoots--Thailand, 1998. MMWR Morb Mortal Wkly Rep. 1999;48(21):437-439.

86.      Hashimoto H, Clyde VJ, Parko KL. Botulism from peyote. N Engl J Med. 1998;339(3):203-204. https://doi.org/10.1056/nejm199807163390316

87.      Loutfy MR, Austin JW, Blanchfield B, Fong IW. An outbreak of foodborne botulism in Ontario. Can J Infect Dis. 2003;14(4):206-209. https://doi.org/10.1155/2003/601525

88.      Erol S, Kürşat H, Parlak M, Cetin K, Alici HA, Görgün S. An outbreak of food-borne botulism. Eur J Anaesthesiol. 1999;16(7):500-501. https://doi.org/10.1097/00003643-199907000-00012

89.      Carlier JP, Henry C, Lorin V, Popoff MR. Le botulisme en France à la fin du deuxième millénaire (1998-2000). Bull Épidémiologique Hebd. 2001;(9):37-39.

90.      Abgueguen P, Delbos V, Chennebault JM, et al. Nine cases of foodborne botulism type B in France and literature review. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2003;22(12):749-752. https://doi.org/10.1007/s10096-003-1019-y

91.      Centers for Disease Control and Prevention (CDC). Botulism outbreak associated with eating fermented food--Alaska, 2001. MMWR Morb Mortal Wkly Rep. 2001;50(32):680-682.

92.      Kalluri P, Crowe C, Reller M, et al. An outbreak of foodborne botulism associated with food sold at a salvage store in Texas. Clin Infect Dis Off Publ Infect Dis Soc Am. 2003;37(11):1490-1495. https://doi.org/10.1086/379326

93.      Vahdani P, Pourshafie MR, Aminzadeh Z. Treatment of two unusual cases of type A and E botulism following consumption of salted fish. Intensive Care Med. 2002;28(8):1189. https://doi.org/10.1007/s00134-002-1362-y

94.      Dawar M, Moody L, Martin JD, Fung C, Isaac-Renton J, Patrick DM. Two outbreaks of botulism associated with fermented salmon roe--British Columbia, August 2001. Can Commun Dis Rep Releve Mal Transm Au Can. 2002;28(6):45-49.

95.      McLaughlin JB, Sobel J, Lynn T, Funk E, Middaugh JP. Botulism Type E Outbreak Associated with Eating a Beached Whale, Alaska. Emerg Infect Dis. 2004;10(9):1685-1687. https://doi.org/10.3201/eid1009.040131

96.      Middaugh J, Lynn T, Funk B, Jilly B, Maslanka S, McLaughlin J. Outbreak of Botulism Type E Associated With Eating a Beached Whale—Western Alaska, July 2002. JAMA. 2003;289(7):836-838. https://doi.org/10.1001/jama.289.7.836

97.      CDC. Summary of Botulism Cases Reported in 2003.; 2003. https://www.cdc.gov/nationalsurveillance/pdfs/botulism_cste_2003.pdf

98.      Vugia DJ, Mase SR, Cole B, et al. Botulism from Drinking Pruno. Emerg Infect Dis. 2009;15(1):69-71. https://doi.org/10.3201/eid1501.081024

99.      Dressler D. [Botulism caused by consumption of smoked salmon]. Nervenarzt. 2005;76(6):763-766. https://doi.org/10.1007/s00115-004-1857-6

100.    Cawthorne A, Celentano LP, D’Ancona F, et al. Botulism and Preserved Green Olives. Emerg Infect Dis. 2005;11(5):781-782. https://doi.org/10.3201/eid1105.041088

101.    Agarwal AK, Goel A, Kohli A, Rohtagi A, Kumar R. Food-borne botulism. J Assoc Physicians India. 2004;52:677-678.

102.    Akdeniz H, Buzgan T, Tekin M, Karsen H, Karahocagil MK. An outbreak of botulism in a family in Eastern Anatolia associated with eating süzme yoghurt buried under soil. Scand J Infect Dis. 2007;39(2):108-114. https://doi.org/10.1080/00365540600951317

103.    Sobel J, Malavet M, John S. Outbreak of clinically mild botulism type E illness from home-salted fish in patients presenting with predominantly gastrointestinal symptoms. Clin Infect Dis Off Publ Infect Dis Soc Am. 2007;45(2):e14-16. https://doi.org/10.1086/518993

104.    Cengiz M, Yilmaz M, Dosemeci L, Ramazanoglu A. A botulism outbreak from roasted canned mushrooms. Hum Exp Toxicol. 2006;25(5):273-278. https://doi.org/10.1191/0960327106ht614oa

105.    Centers for Disease Control and Prevention (CDC). Botulism associated with commercial carrot juice--Georgia and Florida, September 2006. MMWR Morb Mortal Wkly Rep. 2006;55(40):1098-1099.

106.    Brown J, Sutter ME, Algren DA, et al. The Role of a Poison Control Center in Identifying and Limiting an Outbreak of Foodborne Botulism. Am J Prev Med. 2010;38(6):675-678. https://doi.org/10.1016/j.amepre.2010.02.007

107.    Sheth AN, Wiersma P, Atrubin D, et al. International outbreak of severe botulism with prolonged toxemia caused by commercial carrot juice. Clin Infect Dis Off Publ Infect Dis Soc Am. 2008;47(10):1245-1251. https://doi.org/10.1086/592574

108.    Meusburger S, Reichert S, Heibl S, et al. Outbreak of foodborne botulism linked to barbecue, Austria, 2006. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2006;11(12):E061214.4. https://doi.org/10.2807/esw.11.50.03097-en

109.    Topakian R, Heibl C, Stieglbauer K, et al. Quantitative autonomic testing in the management of botulism. J Neurol. 2009;256(5):803-809. https://doi.org/10.1007/s00415-009-5022-9

110.    Lindstrom M, Vuorela M, Hinderink K, et al. Botulism associated with vacuum-packed smoked whitefish in Finland, June-July 2006. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2006;11(7):E060720.3. https://doi.org/10.2807/esw.11.29.03004-en

111.    Centers for Disease Control and Prevention (CDC). Foodborne botulism from home-prepared fermented tofu--California, 2006. MMWR Morb Mortal Wkly Rep. 2007;56(5):96-97. https://doi.org/10.1001/jama.297.12.1311

112.    Tseng CK, Tsai CH, Tseng CH, Tseng YC, Lee FY, Huang WS. An outbreak of foodborne botulism in Taiwan. Int J Hyg Environ Health. 2009;212(1):82-86. https://doi.org/10.1016/j.ijheh.2008.01.002

113.    Zanon P, Pattis P, Pittscheider W, et al. Two cases of foodborne botulism with home-preserved asparagus. Anasthesiologie Intensivmed Notfallmedizin Schmerzther AINS. 2006;41(3):156-159. https://doi.org/10.1055/s-2006-924967

114.    Juliao PC, Maslanka S, Dykes J, et al. National Outbreak of Type A Foodborne Botulism Associated With a Widely Distributed Commercially Canned Hot Dog Chili Sauce. Clin Infect Dis Off Publ Infect Dis Soc Am. 2013;56(3):376-382. https://doi.org/10.1093/cid/cis901

115.    Centers for Disease Control and Prevention (CDC). Botulism associated with commercially canned chili sauce--Texas and Indiana, July 2007. MMWR Morb Mortal Wkly Rep. 2007;56(30):767-769. https://doi.org/10.1001/jama.298.10.1154

116.    Zhang S, Wang Y, Qiu S, et al. Multilocus outbreak of foodborne botulism linked to contaminated sausage in Hebei province, China. Clin Infect Dis Off Publ Infect Dis Soc Am. 2010;51(3):322-325. https://doi.org/10.1086/653945

117.    Swaan CM, van Ouwerkerk IM, Roest HJ. Cluster of botulism among Dutch tourists in Turkey, June 2008. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2010;15(14):19532. https://doi.org/10.2807/ese.15.14.19532-en

118.    King LA, French Multidisciplinary Outbreak Investigation Team. Two severe cases of botulism associated with industrially produced chicken enchiladas, France, August 2008. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2008;13(37):18978. https://doi.org/10.2807/ese.13.37.18978-en

119.    Viray MA, Wamala J, Fagan R, et al. Outbreak of type A foodborne botulism at a boarding school, Uganda, 2008. Epidemiol Infect. 2014;142(11):2297-2301. https://doi.org/10.1017/S0950268814000387

120.    Date K, Fagan R, Crossland S, et al. Three outbreaks of foodborne botulism caused by unsafe home canning of vegetables--Ohio and Washington, 2008 and 2009. J Food Prot. 2011;74(12):2090-2096. https://doi.org/10.4315/0362-028X.JFP-11-128

121.    King LA, Niskanen T, Junnikkala M, et al. Botulism and hot-smoked whitefish: a family cluster of type E botulism in France, September 2009. Eurosurveillance. 2009;14(45):19394. https://doi.org/10.2807/ese.14.45.19394-en

122.    Oriot C, D’Aranda E, Castanier M, et al. One collective case of type A foodborne botulism in Corsica. Clin Toxicol Phila Pa. 2011;49(8):752-754. https://doi.org/10.3109/15563650.2011.606222

123.    Centers for Disease Control and Prevention (CDC). Botulism from drinking prison-made illicit alcohol - Utah 2011. MMWR Morb Mortal Wkly Rep. 2012;61(39):782-784.

124.    Williams BT, Schlein SM, Caravati EM, Ledyard H, Fix ML. Emergency department identification and critical care management of a Utah prison botulism outbreak. Ann Emerg Med. 2014;64(1):26-31. https://doi.org/10.1016/j.annemergmed.2013.10.027

125.    CDC. Notes from the Field: Botulism Caused by Consumption of Commercially Produced Potato Soups Stored Improperly --- Ohio and Georgia, 2011.; 2011:890. Accessed December 15, 2022. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6026a5.htm

126.    Pingeon JM, Vanbockstael C, Popoff MR, et al. Two outbreaks of botulism associated with consumption of green olive paste, France, September 2011. Eurosurveillance. 2011;16(49):20035. https://doi.org/10.2807/ese.16.49.20035-en

127.    Jalava K, Selby K, Pihlajasaari A, et al. Two cases of food-borne botulism in Finland caused by conserved olives, October 2011. Eurosurveillance. 2011;16(49):20034. https://doi.org/10.2807/ese.16.49.20034-en

128.    Forss N, Ramstad R, Bäcklund T, Lindström M, Kolho E. Difficulties in Diagnosing Food-Borne Botulism. Case Rep Neurol. 2012;4(2):113-115. https://doi.org/10.1159/000339736

129.    AĞAÇAYAK A. A case of food-borne botulism by consumption of home-made canned red pepper: Importance of the botulism antitoxin therapy. Afr J Microbiol Res. 2011;5(27):4885-4888. https://doi.org/10.5897/AJMR11.844

130.    Walton RN, Clemens A, Chung J, et al. Outbreak of type E foodborne botulism linked to traditionally prepared salted fish in Ontario, Canada. Foodborne Pathog Dis. 2014;11(10):830-834. https://doi.org/10.1089/fpd.2014.1783

131.    Centers for Disease Control and Prevention (CDC). Notes from the field: botulism from drinking prison-made illicit alcohol - Arizona, 2012. MMWR Morb Mortal Wkly Rep. 2013;62(5):88.

132.    Momose Y, Asakura H, Kitamura M, et al. Food-borne botulism in Japan in March 2012. Int J Infect Dis. 2014;24:20-22. https://doi.org/10.1016/j.ijid.2014.01.014

133.    Wangroongsarb P, Jittaprasartsin C, Suthivarakom K, Kamthalang T, Yeesoonsang S, Sangkitporn S. An outbreak of foodborne botulism in Surat Thani Province, Thailand, 2012. Jpn J Infect Dis. 2013;66(4):353-354. https://doi.org/10.7883/yoken.66.353

134.    Feng L, Chen X, Liu S, Zhou Z, Yang R. Two-family outbreak of botulism associated with the consumption of smoked ribs in Sichuan Province, China. Int J Infect Dis. 2015;30:74-77. https://doi.org/10.1016/j.ijid.2014.10.008

135.    Hammer TH, Jespersen S, Kanstrup J, Ballegaard VC, Kjerulf A, Gelvan A. Fatal outbreak of botulism in Greenland. Infect Dis Lond Engl. 2015;47(3):190-194. https://doi.org/10.3109/00365548.2014.979434

136.    Faridaalaee G, Mohammadi N, Mehryar H, et al. Botulism Poisoning With Home Canned Cheese. Arch Clin Infect Dis. 2013;8(4). https://doi.org/10.5812/archcid.16451

137.    Buj-Jordá H, Arnedo-Pena A, Usó-Blasco J, Pardo-Serrano F. [Botulism outbreak in Castellón (Spain)]. Enferm Infecc Microbiol Clin. 2015;33(9):636-637. https://doi.org/10.1016/j.eimc.2015.03.002

138.    Burke P. Outbreak of Foodborne Botulism Associated with Improperly Jarred Pesto — Ohio and California, 2014. MMWR Morb Mortal Wkly Rep. 2016;65. https://doi.org/10.15585/mmwr.mm6507a2

139.    Mad’arová L, Dorner BG, Schaade L, et al. Reoccurrence of botulinum neurotoxin subtype A3 inducing food-borne botulism, Slovakia, 2015. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2017;22(32):30591. https://doi.org/10.2807/1560-7917.ES.2017.22.32.30591

140.    McCarty CL, Angelo K, Beer KD, et al. Large Outbreak of Botulism Associated with a Church Potluck Meal — Ohio, 2015. Morb Mortal Wkly Rep. 2015;64(29):802-803. https://doi.org/10.15585/mmwr.mm6429a6

141.    Smyth D, Deverall E, Balm M, Nesdale A, Rosemergy I. A case of botulism in New Zealand. N Z Med J. 2015;128(1425):97-100.

142.    CDC. National Botulism Surveillance Summary 2016.; 2016. https://www.cdc.gov/botulism/pdf/Botulism-2016-SUMMARY-508.pdf

143.    Gispert Ametller MÀ, Ortiz Ballujera P, Aguilar Salmerón R. Outbreak of botulism due to consumption of beans. Med Clin (Barc). 2017;149(11):511-512. https://doi.org/10.1016/j.medcli.2017.06.042

144.    Kim M, Zahn M, Reporter R, et al. Outbreak of Foodborne Botulism Associated With Prepackaged Pouches of Liquid Herbal Tea. Open Forum Infect Dis. 2019;6(2):ofz014. https://doi.org/10.1093/ofid/ofz014

145.    Rosen HE, Kimura AC, Crandall J, et al. Foodborne Botulism Outbreak Associated With Commercial Nacho Cheese Sauce From a Gas Station Market. Clin Infect Dis Off Publ Infect Dis Soc Am. 2020;70(8):1695-1700. https://doi.org/10.1093/cid/ciz479

146.    Okunromade O, Dalhat MM, Umar AM, et al. Emergency response to a cluster of suspected food-borne botulism in Abuja, Nigeria: challenges with diagnosis and treatment in a resource-poor setting. Pan Afr Med J. 2020;36:287. https://doi.org/10.11604/pamj.2020.36.287.20872

147.    Bergeron G, Latash J, Da Costa-Carter CA, et al. Notes from the Field: Botulism Outbreak Associated with Home-Canned Peas - New York City, 2018. MMWR Morb Mortal Wkly Rep. 2019;68(10):251-252. https://doi.org/10.15585/mmwr.mm6810a5

148.    Min M, Bai L, Peng X, Guo L, Wan K, Qiu Z. An Outbreak of Botulinum Types A, B, and E Associated With Vacuum-Packaged Salted Fish and Ham. J Emerg Med. 2021;60(6):760-763. https://doi.org/10.1016/j.jemermed.2020.12.006

149.    FSN. Botulism suspected as 35 sick in Italy. Food Safety News. Published October 6, 2020. Accessed December 15, 2022. https://www.foodsafetynews.com/2020/10/botulism-suspected-as-35-sick-in-italy/

150.    Costa AM, Silva JM, Belém F, Silva LP, Ascensão M, Evangelista C. Foodborne botulism: a case report. Porto Biomed J. 2021;6(1):e115. https://doi.org/10.1097/j.pbj.0000000000000115

151.    St Louis ME, Peck SH, Bowering D, et al. Botulism from chopped garlic: delayed recognition of a major outbreak. Ann Intern Med. 1988;108(3):363-368. https://doi.org/10.7326/0003-4819-108-3-363

152.    O’Mahony M, Mitchell E, Gilbert RJ, et al. An outbreak of foodborne botulism associated with contaminated hazelnut yoghurt. Epidemiol Infect. 1990;104(3):389-395. https://doi.org/10.1017/s0950268800047403

153.    Morse DL, Pickard LK, Guzewich JJ, Devine BD, Shayegani M. Garlic-in-oil associated botulism: episode leads to product modification. Am J Public Health. 1990;80(11):1372-1373. https://doi.org/10.2105/ajph.80.11.1372

154.    CDC. Epidemiologic Notes and Reports Fish Botulism - Hawaii, 1990.; 1991:412-414. Accessed November 1, 2022. https://www.cdc.gov/mmwr/preview/mmwrhtml/00014498.htm

155.    Daminelli P, De Nadai V, Bozzo G, et al. Two unlinked cases of foodborne botulism in Italy at the beginning of 2010. New Microbiol. 2011;34(3):287-290.

156.    Carlin F, Broussolle V, Perelle S, Litman S, Fach P. Prevalence of Clostridium botulinum in food raw materials used in REPFEDs manufactured in France. Int J Food Microbiol. 2004;91(2):141-145. https://doi.org/10.1016/S0168-1605(03)00371-4

157.    Barker GC, Malakar PK, Plowman J, Peck MW. Quantification of Nonproteolytic Clostridium botulinum Spore Loads in Food Materials. Appl Environ Microbiol. 2016;82(6):1675-1685. https://doi.org/10.1128/AEM.03630-15

158.    Pernu N, Keto-Timonen R, Lindström M, Korkeala H. High prevalence of Clostridium botulinum in vegetarian sausages. Food Microbiol. 2020;91:103512. https://doi.org/10.1016/j.fm.2020.103512

159.    Ghoddusi HB, Sherburn R. Preliminary study on the isolation of Clostridium butyricum strains from natural sources in the UK and screening the isolates for presence of the type E botulinal toxin gene. Int J Food Microbiol. 2010;142(1):202-206. https://doi.org/10.1016/j.ijfoodmicro.2010.06.028

160.    Shen A, Edwards AN, Sarker MR, Paredes-Sabja D. Sporulation and Germination in Clostridial Pathogens. Microbiol Spectr. 2019;7(6). https://doi.org/10.1128/microbiolspec.GPP3-0017-2018

161.    Keto-Timonen R, Lindström M, Puolanne E, Niemistö M, Korkeala H. Inhibition of toxigenesis of group II (nonproteolytic) Clostridium botulinum type B in meat products by using a reduced level of nitrite. J Food Prot. 2012;75(7):1346-1349. https://doi.org/10.4315/0362-028X.JFP-12-056

162.    Advisory Committee on the Microbiological Safety of Food (ACMSF). Subgroup on non-proteolytic Clostridium botulinum and vacuum and modified atmosphere packaged foods - Final report.; 2020. https://acmsf.food.gov.uk/sites/default/files/acmsf-vpmap-subgroup-report_1.pdf

163.    International Commission on Microbiological Specifications for Food (ICMSF). Clostridium botulinum. In: Microorganisms in Foods 5. T. Roberts. ; 1996:66. Accessed October 27, 2022. https://link.springer.com/book/9780412473500

164.    EFSA. Opinion of the Scientific Panel on Biological Hazards (BIOHAZ) Related to the Effects of Nitrites/Nitrates on the Microbiological Safety of Meat Products | EFSA.; 2003. Accessed October 27, 2022. https://www.efsa.europa.eu/en/efsajournal/pub/14 https://doi.org/10.2903/j.efsa.2004.14

165.    Derman Y, Lindström M, Selby K, Korkeala H. Growth of Group II Clostridium botulinum Strains at Extreme Temperatures. J Food Prot. 2011;74(11):1797-1804. https://doi.org/10.4315/0362-028X.JFP-11-187

166.    Jensen MJ, Genigeorgis C, Lindroth S. Probability of growth of Clostridium botulinum as affected by strain, cell and serologic Type, inoculum size and temperature and time of incubation in a model broth system. J Food Saf. 1986;8(2):109-126. https://doi.org/10.1111/j.1745-4565.1986.tb00557.x

167.    de Jong J. Spoilage of an acid food product by Clostridium perfringens, C. barati and C. butyricum. Int J Food Microbiol. 1989;8(2):121-132. https://doi.org/10.1016/0168-1605(89)90066-4

168.    Stringer SC, Peck MW. 14 - Foodborne clostridia and the safety of in-pack preserved foods. In: Richardson P, ed. In-Pack Processed Foods. Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing; 2008:251-276. https://doi.org/10.1533/9781845694692.3.251

169.    Peck MW. Personal communication. Published online 2022.

170.    van Asselt ED, Zwietering MH. A systematic approach to determine global thermal inactivation parameters for various food pathogens. Int J Food Microbiol. 2006;107(1):73-82. https://doi.org/10.1016/j.ijfoodmicro.2005.08.014

171.    Diao MM, André S, Membré JM. Meta-analysis of D-values of proteolytic Clostridium botulinum and its surrogate strain Clostridium sporogenes PA 3679. Int J Food Microbiol. 2014;174:23-30. https://doi.org/10.1016/j.ijfoodmicro.2013.12.029

172.    Esty JR, Meyer KF. The heat resistance of the spores of B. botulinus and allied anaerobes. XI. J Infect Dis. 1922;31(6):650-663. https://doi.org/10.1093/infdis/31.6.650

173.    Anderson NM, Larkin JW, Cole MB, et al. Food safety objective approach for controlling Clostridium botulinum growth and toxin production in commercially sterile foods. J Food Prot. 2011;74(11):1956-1989. https://doi.org/10.4315/0362-028X.JFP-11-082

174.    Brown GD, Gaze JE, Gaskell DE. Growth of Clostridium botulinum Non-Proteolytic Type B and Type E in “Sous Vide” Products Stored at 2-15 [Degrees] C. Campden Food and Drink Research Association; 1991.

175.    Morton RD, Scott VN, Bernard DT, Wiley RC. Effect of Heat and pH on Toxigenic Clostridium butyricum. J Food Sci. 1990;55(6):1725-1727. https://doi.org/10.1111/j.1365-2621.1990.tb03609.x

176.    Ghoddusi HB, Sherburn RE, Aboaba OO. Growth Limiting pH, Water Activity, and Temperature for Neurotoxigenic Strains of Clostridium butyricum. Int Sch Res Not. 2013;2013:e731430. https://doi.org/10.1155/2013/731430

177.    McClure PJ, Cole MB, Smelt JP. Effects of water activity and pH on growth of Clostridium botulinum. Soc Appl Bacteriol Symp Ser. 1994;23:105S-114S. https://doi.org/10.1111/j.1365-2672.1994.tb04362.x

178.    Raatjes GJ, Smelt JP. Clostridium botulinum can grow and form toxin at pH values lower than 4.6. Nature. 1979;281(5730):398-399. https://doi.org/10.1038/281398a0

179.    Smelt JP, Raatjes GJ, Crowther JS, Verrips CT. Growth and toxin formation by Clostridium botulinum at low pH values. J Appl Bacteriol. 1982;52(1):75-82. https://doi.org/10.1111/j.1365-2672.1982.tb04375.x

180.    Wong DM, Young-Perkins KE, Merson RL. Factors influencing Clostridium botulinum spore germination, outgrowth, and toxin formation in acidified media. Appl Environ Microbiol. 1988;54(6):1446-1450. https://doi.org/10.1128/aem.54.6.1446-1450.1988

181.    Graham AF, Mason DR, Maxwell FJ, Peck MW. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature. Lett Appl Microbiol. 1997;24(2):95-100. https://doi.org/10.1046/j.1472-765x.1997.00348.x

182.    Lebrun S, Van Nieuwenhuysen T, Crèvecoeur S, et al. Influence of reduced levels or suppression of sodium nitrite on the outgrowth and toxinogenesis of psychrotrophic Clostridium botulinum Group II type B in cooked ham. Int J Food Microbiol. 2020;334:108853. https://doi.org/10.1016/j.ijfoodmicro.2020.108853

183.    Hilliard P, Barnett HW, Nordin HR, Rubin LJ. Factors Affecting the Safety of Canned, Cured, Shelf-stable Luncheon Meat Inoculated with Clostridium botulinum. Can Inst Food Technol J. 1969;2(3):141-148. https://doi.org/10.1016/S0008-3860(69)74396-3

184.    Majou D, Christieans S. Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Sci. 2018;145:273-284. https://doi.org/10.1016/j.meatsci.2018.06.013

185.    Govari M, Pexara A. Nitrates and Nitrites in meat products. J Hell Vet Med Soc. 2015;66(3):127-140. https://doi.org/10.12681/jhvms.15856

186.    Hauschild AHW. Clostridium botulinum. M. Dekker; 1989. Accessed October 27, 2022. https://scholar.google.com/scholar_lookup?title=Clostridium+botulinum&author=Hauschild%2C+A.H.W.+%28Health+and+Welfare+Canada%2C+Ottawa%2C+Ontario%2C+Canada%29&publication_year=1989

187.    Montville TJ, Conway LK. Oxidation-Reduction Potentials of Canned Foods and Their Ability to Support Clostridium botulinum Toxigenesis. J Food Sci. 1982;47(6):1879-1882. https://doi.org/10.1111/j.1365-2621.1982.tb12904.x

188.    Jungho K, Foegeding PM. Principles of control. In: Clostridium botulinum. CRC Press; 1993.

189.    Daifas DP, Smith JP, Blanchfield B, Austin JW. Growth and toxin production by Clostridium botulinum in English-style crumpets packaged under modified atmospheres. J Food Prot. 1999;62(4):349-355. https://doi.org/10.4315/0362-028x-62.4.349

190.    Whiting RC, Naftulin KA. Effect of Headspace Oxygen Concentration on Growth and Toxin Production by Proteolytic Strains of Clostridium botulinum. J Food Prot. 1992;55(1):23-27. https://doi.org/10.4315/0362-028X-55.1.23

191.    Sugiyama H, Yang KH. Growth potential of Clostridium botulinum in fresh mushrooms packaged in semipermeable plastic film. Appl Microbiol. 1975;30(6):964-969. https://doi.org/10.1128/am.30.6.964-969.1975

192.    Cai P, Harrison MA, Huang YW, Silva JL. Toxin Production by Clostridium botulinum Type E in Packaged Channel Catfish. J Food Prot. 1997;60(11):1358-1363. https://doi.org/10.4315/0362-028X-60.11.1358

193.    Erickson MC, Ma LM, Doyle MP. Clostridium botulinum Toxin Production in Relation to Spoilage of Atlantic Salmon (Salmo salar) Packaged in Films of Varying Oxygen Permeabilities and with Different Atmospheres. J Food Prot. 2015;78(11):2006-2018. https://doi.org/10.4315/0362-028X.JFP-15-004

194.    Camerini S, Marcocci L, Picarazzi L, et al. Type E Botulinum Neurotoxin-Producing Clostridium butyricum Strains Are Aerotolerant during Vegetative Growth. mSystems. 2019;4(2):e00299-18. https://doi.org/10.1128/mSystems.00299-18

195.    Bachmann FM. Effect of Spices on Growth of Clostridium botulinum. J Infect Dis. 1923;33(3):236-239.

196.    Ismaiel A, Pierson MD. Inhibition of Growth and Germination of C. botulinum 33A, 40B, and 1623E by Essential Oil of Spices. J Food Sci. 1990;55(6):1676-1678. https://doi.org/10.1111/j.1365-2621.1990.tb03598.x

197.    Huhtanen CN. Inhibition of Clostridium botulinum by Spice Extracts and Aliphatic Alcohols. J Food Prot. 1980;43(3):195-196. https://doi.org/10.4315/0362-028X-43.3.195

198.    Nevas M, Korhonen AR, Lindström M, Turkki P, Korkeala H. Antibacterial efficiency of Finnish spice essential oils against pathogenic and spoilage bacteria. J Food Prot. 2004;67(1):199-202. https://doi.org/10.4315/0362-028x-67.1.199

199.    Ismaiel AA, Pierson MD. Effect of Sodium Nitrite and Origanum Oil on Growth and Toxin Production of Clostridium botulinum in TYG Broth and Ground Pork. J Food Prot. 1990;53(11):958-960. https://doi.org/10.4315/0362-028X-53.11.958

200.    EU. Commission Regulation (EU) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives.; 2008. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:354:0016:0033:en:PDF

201.    EU. Commission Regulation (EU) No 1129/2011 of 11 November 2011 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by Establishing a Union List of Food Additives.; 2011. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R1129&from=EN

202.    Gharsallaoui A, Oulahal N, Joly C, Degraeve P. Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Crit Rev Food Sci Nutr. 2016;56(8):1262-1274. https://doi.org/10.1080/10408398.2013.763765

203.    Somers EB, Taylor SL. Antibotulinal Effectiveness of Nisin in Pasteurized Process Cheese Spreads. J Food Prot. 1987;50(10):842-848. https://doi.org/10.4315/0362-028X-50.10.842

204.    Scott VN, Taylor SL. Effect of Nisin on the Outgrowth of Clostridium botulinum Spores. J Food Sci. 1981;46(1):117-126. https://doi.org/10.1111/j.1365-2621.1981.tb14543.x

205.    Huhtanen CN, Naghski J, Custer CS, Russell RW. Growth and toxin production by Clostridium botulinum in moldy tomato juice. Appl Environ Microbiol. 1976;32(5):711-715. https://doi.org/10.1128/aem.32.5.711-715.1976

206.    Odlaug TE, Pflug IJ. Clostridium botulinum growth and toxin production in tomato juice containing Aspergillus gracilis. Appl Environ Microbiol. 1979;37(3):496-504. https://doi.org/10.1128/aem.37.3.496-504.1979

207.    Golden MC, Wanless BJ, David JRD, et al. Effect of Equilibrated pH and Indigenous Spoilage Microorganisms on the Inhibition of Proteolytic Clostridium botulinum Toxin Production in Experimental Meals under Temperature Abuse. J Food Prot. 2017;80(8):1252-1258. https://doi.org/10.4315/0362-028X.JFP-17-012

208.    Hao YY, Brackett RE, Beuchat LR, Doyle MP. Microbiological quality and production of botulinal toxin in film-packaged broccoli, carrots, and green beans. J Food Prot. 1999;62(5):499-508. https://doi.org/10.4315/0362-028x-62.5.499

209.    Firstenberg-Eden R, Rowley DB, Shattuck GE. Competitive Growth of Chicken Skin Microflora and Clostridium botulinum Type E after an Irradiation Dose of 0.3 Mrad. J Food Prot. 1983;46(1):12-15. https://doi.org/10.4315/0362-028X-46.1.12

210.    Okereke A, Montville TJ. Bacteriocin-mediated inhibition of Clostridium botulinum spores by lactic acid bacteria at refrigeration and abuse temperatures. Appl Environ Microbiol. 1991;57(12):3423-3428. https://doi.org/10.1128/aem.57.12.3423-3428.1991

211.    Koukou I, Dahl Devitt T, Dalgaard P. Extensive growth and growth boundary model for non-proteolytic Clostridium botulinum - Evaluation and validation with MAP and smoked foods. Food Microbiol. 2022;102:103931. https://doi.org/10.1016/j.fm.2021.103931

212.    ComBase. Published online 2021. http://www.combase.cc

213.    USDA. Predictive Microbiology Information Portal. Published online 2021. https://portal.errc.ars.usda.gov

214.    FAO and WHO. Microbiological Risk Assessment – Guidance for Food. FAO and WHO; 2021. https://doi.org/10.4060/cb5006en

215.    Smelt JP, Stringer SC, Brul S. Behaviour of individual spores of non proteolytic Clostridium botulinum as an element in quantitative risk assessment. Food Control. 2013;29(2):358-363. https://doi.org/10.1016/j.foodcont.2012.04.021

216.    Juneja VK, Purohit AS, Golden M, et al. A predictive growth model for Clostridium botulinum during cooling of cooked uncured ground beef. Food Microbiol. 2021;93:103618. https://doi.org/10.1016/j.fm.2020.103618

217.    Koukou I, Mejlholm O, Dalgaard P. Cardinal parameter growth and growth boundary model for non-proteolytic Clostridium botulinum – Effect of eight environmental factors. Int J Food Microbiol. 2021;346:109162. https://doi.org/10.1016/j.ijfoodmicro.2021.109162

218.    Grecz N, Wagenaar RO, Dack GM. Storage Stability of Clostridium botulinum Toxin and Spores in Processed Cheese. Appl Microbiol. 1965;13(6):1014-1022. https://doi.org/10.1128/am.13.6.1014-1022.1965

219.    Mafart P, Couvert O, Leguérinel I. Effect of pH on the heat resistance of spores: Comparison of two models. Int J Food Microbiol. 2001;63(1):51-56. https://doi.org/10.1016/S0168-1605(00)00397-4

220.    Stratakos ACh, Koidis A. Suitability, efficiency and microbiological safety of novel physical technologies for the processing of ready-to-eat meals, meats and pumpable products. Int J Food Sci Technol. 2015;50(6):1283-1302. https://doi.org/10.1111/ijfs.12781

221.    Singh M, Rama EN, Kataria J, Leone C, Thippareddi H. Emerging Meat Processing Technologies for Microbiological Safety of Meat and Meat Products. Meat Muscle Biol. 2020;4(2). https://doi.org/10.22175/mmb.11180

222.    Orsat V, Raghavan GSV. Chapter 21 - Radio-Frequency Processing. In: Sun DW, ed. Emerging Technologies for Food Processing (Second Edition). Academic Press; 2014:385-398. https://doi.org/10.1016/B978-0-12-411479-1.00021-8

223.    Rincon AM, Singh RK. Inactivation of Shiga toxin-producing and nonpathogenic Escherichia coli in non-intact steaks cooked in a radio frequency oven. Food Control. 2016;62:390-396. https://doi.org/10.1016/j.foodcont.2015.11.021

224.    Obileke K, Onyeaka H, Miri T, et al. Recent advances in radio frequency, pulsed light, and cold plasma technologies for food safety. J Food Process Eng. 2022;45(10):e14138. https://doi.org/10.1111/jfpe.14138 

225.    Bilek SE, Turantaş F. Decontamination efficiency of high power ultrasound in the fruit and vegetable industry, a review. Int J Food Microbiol. 2013;166(1):155-162. https://doi.org/10.1016/j.ijfoodmicro.2013.06.028

226.    Barbosa-Cánovas GV, Medina-Meza I, Candoğan K, Bermúdez-Aguirre D. Advanced retorting, microwave assisted thermal sterilization (MATS), and pressure assisted thermal sterilization (PATS) to process meat products. Meat Sci. 2014;98(3):420-434. https://doi.org/10.1016/j.meatsci.2014.06.027

227.    Soni A, Smith J, Thompson A, Brightwell G. Microwave-induced thermal sterilization- A review on history, technical progress, advantages and challenges as compared to the conventional methods. Trends Food Sci Technol. 2020;97:433-442. https://doi.org/10.1016/j.tifs.2020.01.030

228.    Evelyn, Silva FVM. High pressure thermal processing for the inactivation of Clostridium perfringens spores in beef slurry. Innov Food Sci Emerg Technol. 2016;33:26-31. https://doi.org/10.1016/j.ifset.2015.12.021

229.    Huang HW, Wu SJ, Lu JK, Shyu YT, Wang CY. Current status and future trends of high-pressure processing in food industry. Food Control. 2017;72:1-8. https://doi.org/10.1016/j.foodcont.2016.07.019

230.    Raso J, Barbosa-Cánovas GV. Nonthermal preservation of foods using combined processing techniques. Crit Rev Food Sci Nutr. 2003;43(3):265-285. https://doi.org/10.1080/10408690390826527

231.    Lenz CA, Reineke K, Knorr D, Vogel RF. High pressure thermal inactivation of Clostridium botulinum type E endospores – kinetic modeling and mechanistic insights. Front Microbiol. 2015;6. Accessed January 19, 2023. https://www.frontiersin.org/articles/10.3389/fmicb.2015.00652

232.    Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF, Gänzle MG. High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl Environ Microbiol. 2006;72(5):3476-3481. https://doi.org/10.1128/AEM.72.5.3476-3481.2006

233.    Bhavya ML, Umesh Hebbar H. Pulsed light processing of foods for microbial safety. Food Qual Saf. 2017;1(3):187-202. https://doi.org/10.1093/fqsafe/fyx017

234.    Skowron K, Bauza-Kaszewska J, Dobrzański Z, Paluszak Z, Skowron KJ. UV-C Radiation as a Factor Reducing Microbiological Contamination of Fish Meal. Sci World J. 2014;2014:e928094. https://doi.org/10.1155/2014/928094

235.    Sen Y, Onal-Ulusoy B, Mutlu M. Aspergillus decontamination in hazelnuts: Evaluation of atmospheric and low-pressure plasma technology. Innov Food Sci Emerg Technol. 2019;54:235-242. https://doi.org/10.1016/j.ifset.2019.04.014

236.    Pankaj SK, Bueno-Ferrer C, Misra NN, et al. Applications of cold plasma technology in food packaging. Trends Food Sci Technol. 2014;35(1):5-17. https://doi.org/10.1016/j.tifs.2013.10.009

237.    Birania S, Attkan AK, Kumar S, Kumar N, Singh VK. Cold plasma in food processing and preservation: A review. J Food Process Eng. 2022;45(9):e14110. https://doi.org/10.1111/jfpe.14110

238.    Nwabor OF, Onyeaka H, Miri T, Obileke K, Anumudu C, Hart A. A Cold Plasma Technology for Ensuring the Microbiological Safety and Quality of Foods. Food Eng Rev. Published online June 24, 2022. https://doi.org/10.1007/s12393-022-09316-0

239.    Connor M, Flynn PB, Fairley DJ, et al. Evolutionary clade affects resistance of Clostridium difficile spores to Cold Atmospheric Plasma. Sci Rep. 2017;7(1):41814. https://doi.org/10.1038/srep41814

240.    Liao X, Muhammad AI, Chen S, et al. Bacterial spore inactivation induced by cold plasma. Crit Rev Food Sci Nutr. 2019;59(16):2562-2572. https://doi.org/10.1080/10408398.2018.1460797

241.    Cheng H, Xu H, Julian McClements D, et al. Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chem. 2022;375:131738. https://doi.org/10.1016/j.foodchem.2021.131738

242.    Kontominas MG, Badeka AV, Kosma IS, Nathanailides CI. Recent Developments in Seafood Packaging Technologies. Foods. 2021;10(5):940. https://doi.org/10.3390/foods10050940

243.    Han JW, Ruiz-Garcia L, Qian JP, Yang XT. Food Packaging: A Comprehensive Review and Future Trends. Compr Rev Food Sci Food Saf. 2018;17(4):860-877. https://doi.org/10.1111/1541-4337.12343

244.    Drago E, Campardelli R, Pettinato M, Perego P. Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods Basel Switz. 2020;9(11):E1628. https://doi.org/10.3390/foods9111628

245.    Alves J, Gaspar PD, Lima TM, Silva PD. What is the role of active packaging in the future of food sustainability? A systematic review. J Sci Food Agric. Published online 2022. https://doi.org/10.1002/jsfa.11880

246.    Guillard V, Gaucel S, Fornaciari C, Angellier-Coussy H, Buche P, Gontard N. The Next Generation of Sustainable Food Packaging to Preserve Our Environment in a Circular Economy Context. Front Nutr. 2018;5. Accessed October 28, 2022. https://doi.org/10.3389/fnut.2018.00121

247.    Yan MR, Hsieh S, Ricacho N. Innovative Food Packaging, Food Quality and Safety, and Consumer Perspectives. Processes. 2022;10(4):747. https://doi.org/10.3390/pr10040747

248.    Wrona M, Nerín C. Analytical Approaches for Analysis of Safety of Modern Food Packaging: A Review. Mol Basel Switz. 2020;25(3):E752. https://doi.org/10.3390/molecules25030752

249.    Mertaoja A, Nowakowska MB, Mascher G, et al. CRISPR-Cas9-Based Toolkit for Clostridium botulinum Group II Spore and Sporulation Research. Front Microbiol. 2021;12. Accessed October 28, 2022. https://doi.org/10.3389/fmicb.2021.617269

250.    Ahmed MdW, Haque MdA, Mohibbullah Md, et al. A review on active packaging for quality and safety of foods: Current trends, applications, prospects and challenges. Food Packag Shelf Life. 2022;33:100913. https://doi.org/10.1016/j.fpsl.2022.100913

251.    Soro AB, Noore S, Hannon S, et al. Current sustainable solutions for extending the shelf life of meat and marine products in the packaging process. Food Packag Shelf Life. 2021;29:100722. https://doi.org/10.1016/j.fpsl.2021.100722

252.    Tiekstra S, Dopico-Parada A, Koivula H, Lahti J, Buntinx M. Holistic Approach to a Successful Market Implementation of Active and Intelligent Food Packaging. Foods. 2021;10(2):465. https://doi.org/10.3390/foods10020465

253.    Lorentzen G, Rosnes JT, Rotabakk BT, Skuland AV, Hansen JS, Ageeva TN. A simulated e-commerce cold chain for fresh cod (Gadus morhua L.) products: Applicability of selected TTIs and effects of pre-treatment and packaging. Food Packag Shelf Life. 2022;31:100794. https://doi.org/10.1016/j.fpsl.2021.100794 

254.    EFSA. Opinion of the Scientific Panel on Biological Hazards (BIOHAZ) Related to Clostridium spp in Foodstuffs | EFSA.; 2005. Accessed October 28, 2022. https://www.efsa.europa.eu/en/efsajournal/pub/199 https://doi.org/10.2903/j.efsa.2005.199

255.    Hudson A, Lake R. Risk Profile: Clostridium botulinum in Ready to Eat Smoked Fish and Shellfish in Sealed Packaging. Ministry for Primary Industries; 2012.

256.    Membré JM, Diao M, Thorin C, Cordier G, Zuber F, André S. Risk assessment of proteolytic Clostridium botulinum in canned foie gras. Int J Food Microbiol. 2015;210:62-72. https://doi.org/10.1016/j.ijfoodmicro.2015.06.002

257.    Malakar PK, Barker GC, Peck MW. Quantitative risk assessment for hazards that arise from non-proteolytic Clostridium botulinum in minimally processed chilled dairy-based foods. Food Microbiol. 2011;28(2):321-330. https://doi.org/10.1016/j.fm.2010.04.004

258.    NHS. Botulism. Published 2022. Accessed October 28, 2022. https://www.nhs.uk/conditions/botulism/

259.    Chalk CH, Benstead TJ, Pound JD, Keezer MR. Medical treatment for botulism. Cochrane Database Syst Rev. 2019;(4). https://doi.org/10.1002/14651858.CD008123.pub4

260.    Rossetto O, Montecucco C. Tables of Toxicity of Botulinum and Tetanus Neurotoxins. Toxins. 2019;11(12):E686. https://doi.org/10.3390/toxins11120686

261.    Jackson KA, Mahon BE, Copeland J, Fagan RP. Botulism mortality in the USA, 1975-2009. Botulinum J. 2015;3(1):6-17. https://doi.org/10.1504/TBJ.2015.078132

262.    Woodburn MJ, Somers E, Rodriguez J, Schantz EJ. Heat Inactivation Rates of Botulinum Toxins a, B, E and F in Some Foods and Buffers. J Food Sci. 1979;44(6):1658-1661. https://doi.org/10.1111/j.1365-2621.1979.tb09110.x

263.    Weingart OG, Schreiber T, Mascher C, et al. The case of botulinum toxin in milk: experimental data. Appl Environ Microbiol. 2010;76(10):3293-3300. https://doi.org/10.1128/AEM.02937-09

264.    CFA. SUSSLE & the 10 Day Rule for Shelf Life. Chilled Food Association. Published 2018. Accessed October 28, 2022. https://www.chilledfood.org/sussle-the-10-day-rule-for-shelf-life/

265.    Samuel E. Home canning: TikTok made me do it. New Food Magazine. Accessed November 10, 2022. https://www.newfoodmagazine.com/article/165512/the-dangers-of-home-canning/

266.    Advisory Committee on Microbiological Safety of Foods (ACMSF). Home and Commercial Bottling of Vegetables in Oil.; 2003. https://acmsf.food.gov.uk/sites/default/files/mnt/drupal_data/sources/files/multimedia/pdfs/Acm636.pdf