ADVISORY COMMITTEE ON THE MICROBIOLOGICAL SAFETY OF FOOD

Items of possible interest from the literature

A list of items from the literature which may be of interest to members is attached.

Secretariat
September 2006
Bacillus cereus

Den Besten HM, Mataragas M, Moezelaar R, Abee T, Zwietering MH.
Quantification of the Effects of Salt Stress and Physiological State on Thermotolerance of *Bacillus cereus* ATCC 10987 and ATCC 14579.

Ehling-Schulz M, Guinebretiere MH, Monthan A, Berge O, Fricker M, Svensson B.
Toxin gene profiling of enterotoxic and emetic *Bacillus cereus*.

Efficacy of amphoteric surfactant- and peracetic acid-based disinfectants on spores of *bacillus cereus* in vitro and on food premises of the German armed forces.
J Food Prot 2006; 69(7): 1605-10.

Hoffmaster AR, Hill KK, Gee JE, Marston CK, De BK, Popovic T, Sue D, Wilkins PP, Avashaia SB, Drumgoole R, Helma CH, Ticknor LO, Okinaka RT, Jackson PJ.
Characterization of *Bacillus cereus* isolates associated with fatal pneumonias: strains are closely related to *Bacillus anthracis* and harbor *B. anthracis* virulence genes.

Panagou EZ, Tassou CC, Skandamis PN.
Physicochemical, microbiological, and organoleptic profiles of Greek table olives from retail outlets.
J Food Prot 2006; 69(7): 1732-8.

Tauveron G, Slomianny C, Henry C, Faille C.
Variability among *Bacillus cereus* strains in spore surface properties and influence on their ability to contaminate food surface equipment.

Thomassin S, Jobin MP, Schmitt P.
The acid tolerance response of *Bacillus cereus* ATCC14579 is dependent on culture pH, growth rate and intracellular pH.
Arch Microbiol 2006; 186(3): 229-239.

Thorsen L, Hansen BM, Nielsen KF, Kendriksen NB, Phipps RK, Budde BB.
Characterization of emetic *Bacillus weihenstephanensis*, a new cereulide-producing bacterium.

Tourasse NJ, Helgason E, Okstad OA, Hegna IK, Kolsto AB.
The Bacillus cereus group: novel aspects of population structure and genome dynamics.

Wijnands LM, Dufrenne JB, Zwietering MH, van Leusden FM.
Spores from mesophilic *Bacillus cereus* strains germinate better and grow faster in simulated gastro-intestinal conditions than spores from psychrotrophic strains.
Campylobacter

Parker CT, Quinones B, Miller WG, Horn ST, Mandrell RE. Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J Clin Microbiol 2006; Aug 30: Epub ahead of print.

Nielson EM, Fussing V, Engberg J, Nielsen NL, Neimann J. Most *Campylobacter* subtypes from sporadic infections can be found in retail poultry products and food animals. Epidemiol Infect 2006; **134**(4): 758-67.

Clostridium

McLauchlin J, Grant KA, Little CL. Food-borne botulism in the United Kingdom. J Public Health (Oxf) 2006; Aug 17 Epub ahead of print.

Cryptosporidium

E. coli O157

Haus-Cheymol R, Espie E, Che D, Vaillant V, DE Valk H, Desenclos JC. Association between indicators of cattle density and incidence of paediatric

Mann JE, Brashears MM. Validation of time and temperature values as critical limits for the control of Escherichia coli O157:H7 during the production of fresh ground beef. J Food Prot 2006; 69(8): 1978-82.

Listeria monocytogenes

Mycobacterium bovis

Salmonella

Holtby I, Tebbutt GM, Anwar S, Aislabie J, Bell V, Flowers W, Hedgley J, Kelly P. Two separate outbreaks of *Salmonella enteritidis* phage type 14b food poisoning linked to the consumption of the same type of frozen food. Public Health 2006; 120(9): 817-23.

Staphylococcus aureus

Toxoplasma

Viruses

Inoue J, Takahashi M, Ito K, Shimosegawa T, Okamoto H. Analysis of human and swine hepatitis E virus (HEV) isolates of genotype 3 in Japan that are only 81-83% similar to reported HEV isolates of the same genotype over the entire genome. J Gen Virol 2006; 87 (pt 8): 2363-9.

