

Probabilistic Risk Assessment

Dr. Rowena Kosmider

Risk Analysis Workgroup Centre for Epidemiology and Risk Analysis Veterinary Laboratories Agency, Weybridge

March 11, 2008

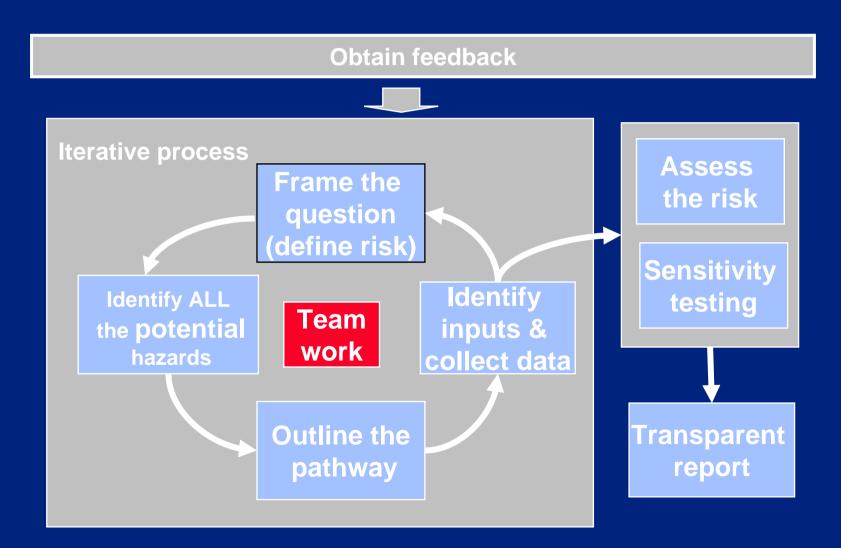
Agenda

- Background information
- Probabilistic risk assessment
 - □ Overview of process
 - Data requirements
 - □ Risk estimate
- The outputs
- Advantages and disadvantages
- Discussion

Background information

Food safety risk assessment

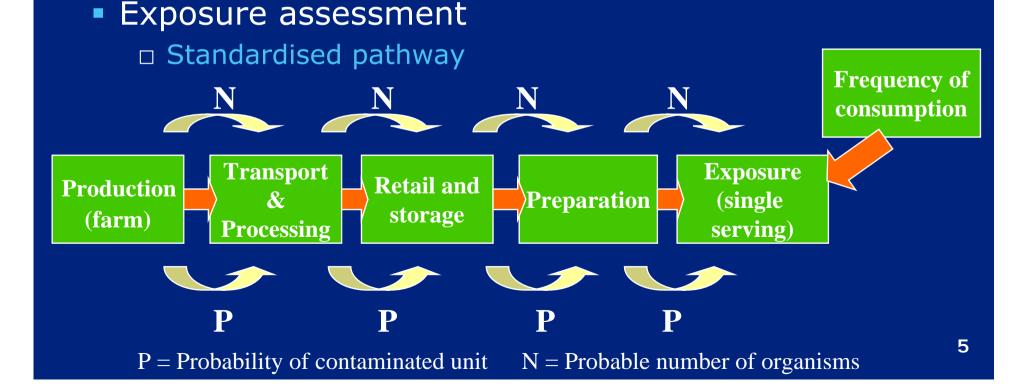
- Origins in chemical risk assessment
 - **1.** Codex Alimentarius Commission framework
- Methods & approaches continuous development


Typical overall aims:

- □ Model the change in the number (prevalence) of bugs within foodchain
- □ Provide estimate of
 - 1. Number of bugs per serving
 - 2. Number of cases of human illness

Undertaken world-wide

- □ Campylobacter & chicken (RIVM, Netherlands; VLA, UK)
- □ VTEC & steak tartar (RIVM, Netherlands)
- □ VTEC & mince meat (Teagsac, Ireland)
- □ Salmonella & poultry (WHO-FAO)


Quantitative risk assessment process

Model pathway

- Follow CAC framework
 Hazard identification
 - □ Hazard characterisation

Exposure assessmentRisk characterisation

Identify & collect data

Quantitative information

- □ Presence/absence (prevalence)
- □ Enumeration (numbers)

Data sources

- □ Literature scientific studies
- □ FSA surveys/research
 - 1. Retail studies
 - 2. Dietary consumption surveys
- □ Expert opinion
- Unpublished data
- QRA informs data collection studies

Data Sources & requirements – examples

Published information

Farm prevalence
Within herd/flock prevalence
Impact of transport on N,P
Impact of processing on N,P

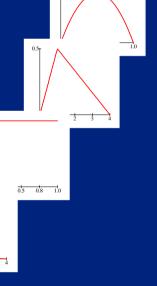
Unpublished information

Number of animals transported
Duration of transport/lairage
Temperature of fridge/freezers
Storage durations
Handling practices

Serving sizeAmount consumed per serving

Modelling approaches along pathway

Methods and approaches


- □ Developed over years
- □ Depend upon
 - 1. Data availability
 - 2. Detail required & aims

Example approaches

- □ On-farm transmission models
- Probability distribution fitted to data
- □ Change in log numbers of bugs
- □ Predictive microbiological models
- □ Model processes
 - 1. Growth, inactivation
 - 2. Mixing, partitioning, cross-contamination

Assess the risk: probabilistic approach

- Inputs described by probability distribution
 Incorporate uncertainty and/or variability
- Extended what-if approach
 Various combinations for each input value
- Monte-carlo simulation
 - □ Computer software –e.g. @Risk[™] (© Palisade)
 - □ Simulate number of bugs in food chain
- Output
 - □ Distribution of risk
 - □ Measure of uncertainty and/or variability

Outputs

Risk estimate – e.g.

□ Number of contaminated servings per year

□ Number of human cases of food-borne illness per year

Validation –e.g.

Output

1. Compare with the reported number of cases per year

- □ Along pathway
 - 1. Retail survey data
 - 2. Abattoir survey data

Peer reviewed

Working for public and animal bealth

What information can the outputs provide?

Examples include.....

- Quantified indication of critical control points in food chain
- Relative contribution of different food pathways to human illness
- Inform on data gaps and uncertainties

The pros and cons

Advantages

□ Provide insight into key steps that >/fl risk

□ Prioritise risk sources

1. Environmental pathways versus food pathways
 Identify scientific uncertainties and biological variability
 Allows for sensitivity testing and scenario analyses

Disadvantages

□ Useful data may be limited -> expert opinion

- □ Lack of formal validation
- □ Lack of information -> poor model
- □ Misinterpretation of quantitative results

Discussion points

QMRA is simplification of complex process

- □ Balance between
 - 1. Parsimonious model
 - 2. Available and relevant data
 - **3.** Aims & objectives
- □ Scientific knowledge in food safety increased over years
 - 1. Key data gaps: e.g. cross-contamination from hide to carcass
 - 2. Modelling issue: e.g. lack of aerosol transmission

Inclusion of predictive microbiological models

- Designed for different purpose
- □ Issue with incorporating uncertainty/variability in models
- QMRA scientific & transparent tool